Deteksi Kebocoran Pipa Air Menggunakan Machine Learning dengan Jaringan Nirkabel IEEE 802.15.4
Abstract
Full Text:
PDF (Bahasa Indonesia)References
S. K. Mandal, F. T. S. Chan, and M. K. Tiwari, “Leak detection of pipeline: An integrated approach of rough set theory and artificial bee colony trained SVM,†Expert Systems with Applications, vol. 39, no. 3, pp. 3071–3080, 2012, doi: 10.1016/j.eswa.2011.08.170.
J. Mashford, D. de Silva, D. Marney, and S. Burn, “An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine,†NSS 2009 - Network and System Security, pp. 534–539, 2009, doi: 10.1109/NSS.2009.38.
N. Mashhadi, I. Shahrour, N. Attoue, J. el Khattabi, and A. Aljer, “Use of machine learning for leak detection and localization in water distribution systems,†Smart Cities, vol. 4, no. 4, pp. 1293–1315, Dec. 2021, doi: 10.3390/smartcities4040069.
H. W. Li, J. L. Yan, W. Wu, and L. Mou, “Research on water leakage prediction of urban water supply network based on grey GM (0, N) model,†2011 International Conference on Networking, Sensing and Control, ICNSC 2011, no. April, pp. 388–392, 2011, doi: 10.1109/ICNSC.2011.5874884.
M. S. Islam, R. Sadiq, M. J. Rodriguez, A. Francisque, H. Najjaran, and M. Hoorfar, “Leakage detection and location in water distribution systems using a fuzzy-based methodology,†Urban Water Journal, vol. 8, no. 6, pp. 351–365, 2011, doi: 10.1080/1573062X.2011.617829.
A. Rojik, Endroyono, and A. N. Irfansyah, “Water Pipe Leak Detection using the k-Nearest Neighbor Method,†Proceedings - 2019 International Seminar on Intelligent Technology and Its Application, ISITIA 2019, pp. 393–398, 2019, doi: 10.1109/ISITIA.2019.8937190.
Y. Liu, X. Ma, Y. Li, Y. Tie, Y. Zhang, and J. Gao, “Water pipeline leakage detection based on machine learning and wireless sensor networks,†Sensors (Switzerland), vol. 19, no. 23, pp. 1–21, 2019, doi: 10.3390/s19235086.
J. C. van der Walt, P. S. Heyns, and D. N. Wilke, “Pipe network leak detection: comparison between statistical and machine learning techniques,†Urban Water Journal, vol. 15, no. 10, pp. 953–960, 2018, doi: 10.1080/1573062X.2019.1597375.
R. H. Y. Perdana, H. Hudiono, and A. F. N. Luqmani, “Water Leak Detection and Shut-Off System on Water Distribution Pipe Network Using Wireless Sensor Network,†in 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), Oct. 2019, pp. 297–301. doi: 10.1109/ICAMIMIA47173.2019.9223386.
Y. Baiji and P. Sundaravadivel, “ILoLeak-detect: An IoT-based LoRAWAN-enabled oil leak detection system for smart cities,†in Proceedings - 2019 IEEE International Symposium on Smart Electronic Systems, iSES 2019, Dec. 2019, pp. 262–267. doi: 10.1109/iSES47678.2019.00065.
J. Alves Coelho, A. Glória, and P. Sebastião, “Precise Water Leak Detection Using Machine Learning and Real-Time Sensor Data,†IoT, vol. 1, no. 2, pp. 474–493, Dec. 2020, doi: 10.3390/iot1020026.
J. A. Gómez-Camperos, E. E. Espinel-Blanco, and F. J. Regino-Ubarnes, “Diagnosis of horizontal pipe leaks using neural networks,†Journal of Physics: Conference Series, vol. 1388, no. 1, 2019, doi: 10.1088/1742-6596/1388/1/012032.
M. Henrie, P. Carpenter, and R. E. Nicholas, Real-Time Transient Model–Based Leak Detection. 2016. doi: 10.1016/b978-0-12-802240-5.00004-2.
G. Geiger, “State-of-the-art in leak detection and localization,†Erdoel Erdgas Kohle, vol. 122, no. 12, pp. 193–198, 2006.
Z. X. Yang and J. H. Zhong, “A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis,†Entropy, vol. 18, no. 4, Apr. 2016, doi: 10.3390/e18040112.
S. Bakheet, “An SVM framework for malignant melanoma detection based on optimized HOG features,†Computation, vol. 5, no. 1, Mar. 2017, doi: 10.3390/computation5010004.
J. A. Coelho and A. Glória, “IoT Learning and Real-Time Sensor Data,†pp. 474–493, 2020, doi: 10.3390/iot1020026.
Scikit-Learn, “scikit-learn Machine Learning in Python,†2022.
DOI: https://doi.org/10.35314/isi.v7i1.2360
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.