Klasterisasi Menggunakan Algoritma K-Means Dan Elbow Pada Opini Masyarakat Tentang Kebijakan Sekolah Luring Tahun 2022

Rahmawan Bagus Trianto(1*), Agus Susilo Nugroho(2), Eko Supriyadi(3)

(1) Universitas An Nuur
(2) Universitas An Nuur
(3) Universitas An Nuur
(*) Corresponding Author

Abstract


The covid-19 pandemic that swept across the globe had adverse effects in many areas. One of the most affected areas is education in Indonesia. The online learning model became the only option at the time, which had a negative impact on the quality of education in Indonesia. As time went on, conditions are getting better, but there was still a threat of covid-19. In early 2022 governments began to adopt face-to-face or offline learning that attracted opinions on social media. The opinions that are widely written on social media need to be prepared because they could be input to the government. Clustering using the k-meansalgorithm with the elbow method as its optimizer in determining the best cluster number is one of the opinions processing options on social media for measuring and accounting. Data is treated with two approaches: with and without stemming. Applying the elbow method to the k-means algorithm produces a performance of the clustering model with a DBI value of 0.003 with 4 clusters, and a value of SSE 0.331, for data without stemming. On data with treatment using stemming, it has 3 cluster numbers with a value of DBI at 0.003 and SSE at 0426.

Article metrics

Abstract views : 341 | views : 66

Full Text:

PDF (Bahasa Indonesia)

References


G. Guillén, T. Sawin, and N. Avineri, “Persepsi Mahasiswa Dalam Penggunaan Teknologi Pembelajaran Bahasa Arab pada Pertemuan Tatap Muka Terbatas di Masa Pandemi COVID-19,” Alibbaa’ J. Pendidik. Bhs. Arab, vol. 3, no. 1, pp. 320–328, 2022.

C. N. Rohim, R. K. Wiryaningtyas, L. N. C. L. Aji, Y. A. Priambudi, and Darmadi, “Masalah Yang Muncul Pada Pelaksanaan Kegiatan Pembelajaran Luring Di Masa Pandemi,” Innov. J. Soc. Sci. Res., vol. 2, no. 1, pp. 228–231, 2022.

S. F. Nissa and A. Haryanto, “Implementasi Pembelajaran Tatap Muka Di Masa Pandemi Covid-19,” J. IKA PGSD (Ikatan Alumni PGSD) UNARS, vol. 8, no. 2, pp. 402–409, 2020.

A. Rangrej, S. Kulkarni, and A. V. Tendulkar, “Comparative study of clustering techniques for short text documents,” in Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 111–112, 2011.

T. S. Kartikasari, H. Setiawan, and P. L. T. Irawan, “Implementasi Text Mining Untuk Analisis Opini Publik Terhadap Calon Presiden,” J. SimanteC, vol. 7, no. 1, pp. 39–47, 2018.

Y. Xing, X. Wang, C. Qiu, Y. Li, and W. He, “Research on opinion polarization by big data analytics capabilities in online social networks,” Technol. Soc., vol. 68, no. January, p. 101902, 2022.

H. Irsyad, A. Farisi, and M. R. Pribadi, “Klasifikasi Opini Masyarakat Terhadap Jasa ISP MyRepublic dengan Naïve Bayes,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 1, pp. 30–34, 2019.

K. Ariasa, I. G. A. Gunadi, and I. M. Candiasa, “Optimasi Algoritma Klaster Dinamis pada K-Means dalam Pengelompokkan Kinerja Akademik Mahasiswa (Studi Kasus: Universitas Pendidikan Ganesha),” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 9, no. 2, pp. 181–193, 2020.

R. C. Balabantaray, C. Sarma, and M. Jha, “Document Clustering using K-Means and K-Medoids,” Int. J. Knowl. Based Comput. Syst., vol. 1, no. 1, pp. 7–13, 2013.

Zulhanif, Sudartianto, B. Tantular, and I. G. N. M. Jaya, “Aplikasi Latent Dirichlet Allocation ( Lda ) Pada Clustering Data Teks,” J. Log., vol. 7, no. 1, pp. 46–51, 2017.

J. A. Lossio-Ventura, S. Gonzales, J. Morzan, H. Alatrista-Salas, T. Hernandez-Boussard, and J. Bian, “Evaluation of clustering and topic modeling methods over health-related tweets and emails,” Artif. Intell. Med., vol.

, no. May 2020.

S. Rustam, H. A. Santoso, and C. Supriyanto, “Optimasi K-Means Clustering Untuk Identifikasi Daerah Endemik Penyakit Menular Dengan Algoritma Particle Swarm Optimization Di Kota Semarang,” Ilk. J. Ilm., vol. 10, no. 3, pp. 251–259, 2018.

D. P. Isnarwaty and Irhamah, “Text clustering pada akun twitter layanan ekspedisi JNE , J&T, dan Pos Indonesia menggunakan metode Density-Based Spatial Clustering of Applications with Noise ( DBSCAN ),” J. Sains dan Seni, vol. 8, no. 2, pp. 137–144, 2019.

D. Jollyta, S. Efendi, M. Zarlis, and H. Mawengkang, “Optimasi Cluster Pada Data Stunting: Teknik Evaluasi Cluster Sum of Square Error dan Davies Bouldin Index,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 918, 2019.

D. Merlini and M. Rossini, “Text categorization with WEKA: A survey,” Mach. Learn. with Appl., vol. 4, no. April, p. 100033, 2021.

S. Kumar, A. K. Kar, and P. V. Ilavarasan, “Applications of text mining in services management: A systematic literature review,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 1, p. 100008, 2021.

P. Fränti and S. Sieranoja, “How much can k-means be improved by using better initialization and repeats?,” Pattern Recognit., vol. 93, pp. 95–112, 2019.

A. F. Febrianti, A. H. Cabral, and G. Anuraga, “K-Means Clustering Dengan Metode Elbow Untuk Pengelompokan Kabupaten Dan Kota Di Jawa Timur,” Semin. Nas. Has. Ris. dan Pengabdi. -SNHRP, pp. 863–870, 2018.

A. F. Hadi, D. Bagus, and M. Hasan, “Text Mining Pada Media Sosial Twitter Studi Kasus : Masa Tenang Pilkada DKI 2017 Putaran 2,” in Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 2017 Surabaya, Universitas Airlangga, pp. 324–331, 2017.

N. Alami, M. Meknassi, N. En-nahnahi, Y. El Adlouni, and O. Ammor, “Unsupervised neural networks for automatic Arabic text summarization using document clustering and topic modeling,” Expert Syst. Appl., vol. 172, no. May 2020, p. 114652, 2021.

E. Supriyadi, A. Basuki, and R. Sigit, “Klasterisasi Kualitas Beras Berdasarkan Citra Pecahan Bulir Dan Sebaran Warna,” J. INOVTEK POLBENG - SERI Inform., vol. 6, no. 1, pp. 105–119, 2021.

S. F. Susilo, A. Jamaludin, and I. Purnamasari, “Pengelompokan Desa Menggunakan K-Means Untuk Penyelenggaraan Penanggulangan Bencana Banjir,” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 156–167, 2020.

K. Thirumoorthy and K. Muneeswaran, “A hybrid approach for text document clustering using Jaya optimization algorithm,” Expert Syst. Appl., vol. 178, no. April, pp. 1–16, 2021.

R. K. Dinata, H. Novriando, N. Hasdyna, and S. Retno, “Reduksi Atribut Menggunakan Information Gain untuk Optimasi Cluster Algoritma K-Means,” J. Edukasi dan Penelit. Inform., vol. 6, no. 1, pp. 48–53, 2020.

D. Zhao et al., “k-means clustering and kNN classification based on negative databases,” Appl. Soft Comput., vol. 110, p. 107732, 2021.




DOI: https://doi.org/10.35314/isi.v8i1.2756

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Crossref logo Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: jurnalinformatika@polbeng.ac.id
www.polbeng.ac.id

Web
Analytics
View My Stats