Implementasi dan Analisis Protokol Komunikasi IoT untuk Crowdsensing pada Bidang Kesehatan

Ata Amrullah(1), M. Udin Harun Al Rasyid(2*), Idris Winarno(3)

(1) 
(2) Politeknik Elektronika Negeri Surabaya (PENS)
(3) 
(*) Corresponding Author

Abstract


Perkembangan teknologi informasi dan komunikasi telah menandai berlangsungnya era revolusi industri 4.0. Kemudahan pertukaran data antar perangkat yang bergerak menjadikan paradigma baru pada pengumpulan data terpusat yang disebut crowdsensing. Pada bidang kesehatan, crowdsensing tidak lagi mengandalkan telepon bergerak sebagai perangkat pengumpul informasi karena keterbatasan sensor tertanam pada telepon. Berbagai penelitian menggunakan crowdsensing telah mengandalkan kemampuan dari perangkat Internet of Things (IoT). Crowdsensing pada sektor kesehatan dapat membantu mengumpulkan sumber data yang substansial tentang kondisi kesehatan masyarakat secara umum. Namun, kebanyakan teknik crowdsensing hanya mengandalkan satu protokol komunikasi. Metode ini dapat menyebabkan masalah jika perangkat IoT menggunakan protokol komunikasi yang beragam. Oleh sebab itu, kami mengusulkan arsitektur gateway protokol multi-komunikasi untuk crowdsensing. Ketiga protokol komunikasi yang dijalankan pada gateway adalah MQTT, HTTP dan CoAP. Gateway ini berfungsi untuk menangkap data dari crowdsensor dan mengubah ketiga protokol ke dalam protokol yang sama dengan back-end server di cloud. Hasil pengujian menunjukkan bahwa gateway mampu menerima data dengan baik meskipun ketiga protokol dijalankan secara bersamaan. Protokol CoAP memiliki kinerja yang lebih baik daripada kedua protokol dalam pengujian throughput. Protokol MQTT memiliki performa terbaik pada pengukuran delay.

Article metrics

Abstract views : 682 | views : 87

Full Text:

PDF

References


V. Pilloni, “How data will transform industrial processes: Crowdsensing, crowdsourcing and big data as pillars of industry 4.0,” Futur. Internet, 2018, doi: 10.3390/fi10030024.

R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and future challenges,” IEEE Commun. Mag., 2011, doi: 10.1109/MCOM.2011.6069707.

J. Ren, Y. Zhang, K. Zhang, and X. Shen, “SACRM: Social Aware Crowdsourcing with Reputation Management in mobile sensing,” Comput. Commun., 2015, doi: 10.1016/j.comcom.2015.01.022.

F. Laws, C. Scheible, and H. Schütze, “Active learning with amazon mechanical turk,” in EMNLP 2011 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2011.

C. Ken and L. Xiaoying, “A Zigbee based mesh network for ECG monitoring system,” in 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, 2010, doi: 10.1109/ICBBE.2010.5514693.

T. Ludwig, T. Siebigteroth, and V. Pipek, “Crowdmonitor: Monitoring physical and digital activities of citizens during emergencies,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, doi: 10.1007/978-3-319-15168-7_51.

S. Jovanović et al., “A mobile crowd sensing application for hypertensive patients,” Sensors (Switzerland), 2019, doi: 10.3390/s19020400.

M. Marjanovic, A. Antonic, and I. P. Zarko, “Edge computing architecture for mobile crowdsensing,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2799707.

R. Pryss, J. Schobel, and M. Reichert, “Requirements for a flexible and generic api enabling mobile crowdsensing mHealth applications,” in Proceedings - 2018 4th International Workshop on Requirements Engineering for Self-Adaptive, Collaborative, and Cyber Physical Systems, RESACS 2018, 2018, doi: 10.1109/RESACS.2018.00010.

A. Zambrano, M. E. Ortiz, M. Zambrano Vizuete, and X. Calderón, “Crowdsensing and MQTT Protocol: A Real-Time Solution for the Prompt Localization of Kidnapped People,” in Advances in Intelligent Systems and Computing, 2020, doi: 10.1007/978-3-030-32033-1_22.

S. Maqbool, M. Waseem Iqbal, M. Raza Naqvi, K. Sarmad Arif, M. Ahmed, and M. Arif, “IoT Based Remote Patient Monitoring System,” in 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, 2020, doi: 10.1109/DASA51403.2020.9317213.

E. T. S. Institute, “Telecommunications and {Internet} Protocol Harmonization Over Networks ({TIPHON}); {End}-to-End Quality of Service in {TIPHON} Systems; {Part} 5: {Quality} of Service ({QoS}) measurement methodologies,” ETSI TS 101 329-5 v1.1.2, 2002.

R. Bank, “ITU - Telecommunication Standardization Sector,” Construction. 2001.

N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP,” 2017, doi: 10.1109/SysEng.2017.8088251.

“Eclipse Mosquitto.” [Online]. Available: https://mosquitto.org/. [Accessed: 22-Jan-2022].

“paho-mqtt • PyPI.” [Online]. Available: https://pypi.org/project/paho-mqtt/. [Accessed: 13-Feb-2022].

“Wireshark • Go Deep.” [Online]. Available: https://www.wireshark.org/. [Accessed: 25-Jan-2022].




DOI: https://doi.org/10.35314/isi.v7i1.2365

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Crossref logo Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: jurnalinformatika@polbeng.ac.id
www.polbeng.ac.id

Web
Analytics
View My Stats