Implementasi Metode K-Means, Dbscan, Dan Meanshift Untuk Analisis Jenis Ancaman Jaringan Pada Intrusion Detection System

Toga Aldila Cinderatama(1*), Rinanza Zulmy Alhamri(2), Yoppy Yunhasnawa(3)

(1) PSDKU Politeknik Negeri Malang di Kota Kediri
(2) PSDKU Politeknik Negeri Malang di Kota Kediri
(3) PSDKU Politeknik Negeri Malang di Kota Kediri
(*) Corresponding Author


The implementation of network security infrastructure has been carried out, including the Intrusion Detection System (IDS). However, in its implementation there are still many who have not combined with Data Technology (Data Science) to get a more comprehensive analysis. This study aims to analyze the types and characteristics of network threats using data science. As a computational method, the results of 3 algorithms in the unsupervised learning category will be implemented and compared, namely K-Means, Meanshift, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). From the experimental results as measured by the Silhouette Index (SI ) the best cluster of each implemented algorithm is DBSCAN which has the best SI value of 0.3424 with an Eps value of 0.2 and a MinPts value of 3. Meanwhile, from the results of clustering using K-Means, The best SI value was obtained by experiment k=4 with a value of 0.4531. The results of clustering using MeanShift, the best SI value was obtained by experiment bandwidth = 1 with a value of 0.5305.

Article metrics

Abstract views : 737 | views : 217

Full Text:

PDF (Bahasa Indonesia)


Barbará, D. et al. Applications of Data Mining in Computer Security. Kluwer Academic Publishers. 2002: 33-76.

Chandrashekhar Azad, V. K. Data Mining in Intrusion Detection: A Comparative Study of Methods, Types and Data Sets. International Journal of Information Technology and Computer Science. 2013; 5(8): 75-90.

Chauhan, N. S. An introduction to the DBSCAN algorithm and its Implementation in Python. Retrieved from, 2020-04-01.

Cynet. EDR Security and Protection for the Enterprise. Retrieved from Cynet: 2019-09-29.

D. F. Pramesti, M. T. “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ). J-ptiik. 2017; 1( 9): 723-732.

Davy Cielen, A. D. Introducing Data Science: Big Data, Machine Learning, And More, Using Python Tools. Manning Publications. 2016: 1-30.

Education, I. C. Unsupervised Learning. Retrieved from 2020-09-21.

G. Yedukondalu, B. R. Intrusion Detection System Using Data Mining Techniques. International Journal of Advanced Science and Technology. 2020; 9(15): 1687-1695.

H. Zayuka, S. M. Design and Analysis of Data Clustering Using K-Medoids Method For English News. e-Proceeding Eng, 2017; 2182-2190.

Hyunseung Choi, M. K. Unsupervised learning approach for network intrusion detection system using autoencoders, . The Journal of Supercomputing. 2019; Vol.75: 5597-5621.

I. Parlina, A. P. Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center. Journal of Computer Engineering, System and Science, 2018; 3(1): 87-93.

S. Nasrin, et. al. Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications.2019; 12(1-2):1-9.

FireEye Cyber Threat Map,, diakses pada Tanggal 11 Oktober 2021.

Live Cyber Attack Map, Live Cyber Attack Map, diakses pada tanggal 11 Oktober 2021.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This Journal has been listed and indexed in :

Crossref logo Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 

View My Stats