Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network

Budi Yanto(1*), Luth Fimawahib(2), Asep Supriyanto(3), B.Herawan Hayadi(4), Rinanda Rizki Pratama(5)

(1) Fakultas Ilmu Komputer, Prodi Teknik Informatika, Universitas Pasir Pengaraian
(2) Fakultas Ilmu Komputer, Prodi Teknik Informatika, Universitas Pasir Pengaraian
(3) Fakultas Ilmu Komputer, Prodi Teknik Informatika, Universitas Pasir Pengaraian
(4) Universitas Prof.Dr.Hazarin, SH, JL. Ahmad Yani, No. 1 Bengkulu
(5) Fakultas Ilmu Komputer, Prodi Teknik Informatika, Universitas Pasir Pengaraian
(*) Corresponding Author

Abstract


Sweet orange is very much consumed by humans because oranges are rich in vitamin C, sweet oranges can be consumed directly to drink. The classification carried out to determine proper (good) and unfit (rotten) oranges still uses manual methods, This classification has several weaknesses, namely the existence of human visual limitations, is influenced by the psychological condition of the observations and takes a long time. One of the classification methods for sweet orange fruit with a computerized system the Convolutional Neural Network (CNN) is algorithm deep learning to the development of the Multilayer Perceptron (MLP) with 100 datasets of sweet orange images, the classification accuracy rate was 97.5184%. the classification was carried out, the result was 67.8221%. Testing of 10 citrus fruit images divided into 5 good citrus images and 5 rotten citrus images at 96% for training 92% for testing which were considered to have been able to classify the appropriateness of sweet orange fruit very well. The graph of the results of the accuracy testing is 0.92 or 92%. This result is quite good, for the RGB histogram display the orange image is good

Article metrics

Abstract views : 285 | views : 91

Full Text:

PDF

References


M. Lukmana and F. Sahab, “Respon Pertumbuhan Bibit Jeruk Manis (Citrus sinensis L.) terhadap Pemberian Limbah Solid Industri Kelapa Sawit,” Agrisains J. Budid. Tanam. Perkeb. Politek. Hasnur, vol. 6, no. 02, 2021, doi: 10.46365/agrs.v6i02.410.

D. Tobing, E. Bayu, and L. Siregar, “Identifikasi Karakter Morfologi Dalam Penyusunan Deskripsi Jeruk Siam (Citrus Nobilis) Di Beberapa Daerah Kabupaten Karo,” J. Agroekoteknologi Univ. Sumatera Utara, vol. 2, no. 1, pp. 72–95, 2013, doi: 10.32734/jaet.v2i1.5722.

“PEMBERIAN BAHAN AMANDEMEN UNTUK PERBAIKAN RETENSI HARA TANAMAN JERUK MANIS (CITRUS SINENSIS L.) DI DESA TALIMBARU KECAMATAN BARUSJAHE KABUPATEN KARO,” AGROEKOTEKNOLOGI, vol. 4, no. 1, 2015, doi: 10.32734/jaet.v4i1.12891.

M. Michiko, C. V. Manalu, and M. S. Mutia, “UJI EFEKTIVITAS EKSTRAK ETANOL KULIT JERUK MANIS (CITRUS SINENSIS) TERHADAP BAKTERI PROPIONIBACTERIUM ACNES,” (Jurnal Ilm. Mhs. Kesehat. Masyarakat), vol. 5, no. 1, 2020, doi: 10.37887/jimkesmas.v5i1.10552.

B. Surya Wibowo, I. Tazi, and K. Triyana, “Pengembangan Sistem Sensor Rasa Berbasis Membran Selektif Ion untuk Klasifikasi Buah Jeruk (Halaman 9 s.d. 13),” J. Fis. Indones., vol. 17, no. 49, 2014, doi: 10.22146/jfi.24405.

R. A. W. Ramadhan, M. Baskara, and Agus Suryanto, “PENGARUH PEMBERIAN PUPUK NPK TERHADAP FRUIT SET TANAMAN JERUK MANIS ( Citrus sinensis Osb .) VAR . PACITAN,” J. Produksi Tanam., vol. 3, 2015.

A. R. K. Haba and K. C. Pelangi, “SISTEM CERDAS DALAM KLASIFIKASI KEMATANGAN BUAH JERUK BERDASARKAN FITUR EKSTRAKSI GLCM DENGAN METODE NAÏVE BAYES,” J. Teknol. dan Manaj. Inform., vol. 5, no. 2, 2019, doi: 10.26905/jtmi.v5i2.3935.

K. Warman, L. A. Harahap, and P. Munir, “Identifikasi Kematangan Buah Jeruk Dengan Teknik Jaringan Syaraf Tiruan,” J. Rekayasa Pangan dan Pertan., vol. 3, no. 2, pp. 248–253, 2015.

R. Utami, E. Widowati, and A. Rahayu, “SCREENING DAN KARAKTERISASI PEKTINESTERASE SEBAGAI ENZIM POTENSIAL DALAM KLARIFIKASI SARI BUAH JERUK KEPROK GARUT (Citrus nobilis var.chrysocarpa),” J. Agritech, vol. 35, no. 04, 2015, doi: 10.22146/agritech.9326.

R. Rahmadewi, G. L. Sari, and H. Firmansyah, “Pendeteksian Kematangan Buah Jeruk Dengan Fitur Citra Kulit Buah Menggunakan Transformasi Ruang Warna HSV,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 5, no. 1.1, 2019.

S. Yudawati and A. P. Wibowo, “KAJIAN TERHADAP BEBERAPA JENIS BUAH SEBAGAI ALTERNATIF PENINGKAT KADAR HB,” Biomed Sci., vol. 2, no. 2, 2014.

M. F. Barkah, “Klasifikasi Rasa Buah Jeruk Pontianak Berdasarkan Warna Kulit Buah Jeruk Menggunakan Metode K-Nearest Neighbor,” Coding Rekayasa Sist. Komput., vol. 08, no. 01, 2020.

B. Yanto, B. -, J. -, and B. H. Hayadi, “INDENTIFIKASI POLA AKSARA ARAB MELAYU DENGAN JARINGAN SYARAF TIRUAN CONVOLUTIONAL NEURAL NETWORK (CNN),” JSAI (Journal Sci. Appl. Informatics), vol. 3, no. 3, 2020, doi: 10.36085/jsai.v3i3.1151.

K. Muchtar, Chairuman, Yudha Nurdin, and Afdhal Afdhal, “Pendeteksian Septoria pada Tanaman Tomat dengan Metode Deep Learning berbasis Raspberry Pi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, 2021, doi: 10.29207/resti.v5i1.2831.

N. Kasim and G. S. Nugraha, “Pengenalan Pola Tulisan Tangan Aksara Arab Menggunakan Metode Convolution Neural Network,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 3, no. 1, 2021, doi: 10.29303/jtika.v3i1.136.

T. Ito et al., “Deep Neural Network Incorporating CNN and MF for Item-Based Fashion Recommendation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, vol. 12280 LNAI, doi: 10.1007/978-3-030-69886-7_4.

M. B. Bejiga, A. Zeggada, A. Nouffidj, and F. Melgani, “A convolutional neural network approach for assisting avalanche search and rescue operations with UAV imagery,” Remote Sens., 2017, doi: 10.3390/rs9020100.

H. A. Pratiwi, M. Cahyanti, and M. Lamsani, “IMPLEMENTASI DEEP LEARNING FLOWER SCANNER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” Sebatik, vol. 25, no. 1, 2021, doi: 10.46984/sebatik.v25i1.1297.

M. F. Naufal, “Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, 2021, doi: 10.25126/jtiik.2021824553.

A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks Alex,” Proc. 31st Int. Conf. Mach. Learn., 2012, doi: 10.1007/s13398-014-0173-7.2.

B. Yanto, J. Jufri, A. Lubis, B. H. Hayadi, and E. Armita, NST, “KLARIFIKASI KEMATANGAN BUAH NANAS DENGAN RUANG WARNA HUE SATURATION INTENSITY (HSI),” INOVTEK Polbeng - Seri Inform., vol. 6, no. 1, 2021, doi: 10.35314/isi.v6i1.1882.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Adaptive Computation and Machine Learning series). 2016.

S. Ye, Z. Zhang, X. Song, Y. Wang, Y. Chen, and C. Huang, “A flow feature detection method for modeling pressure distribution around a cylinder in non-uniform flows by using a convolutional neural network,” Sci. Rep., vol. 10, no. 1, 2020, doi: 10.1038/s41598-020-61450-z.

Rismiyati, “Implementasi Convolution Neural Network untuk Sortasi Mutu Salak Ekspor Berbasis Citra Digital,” 2016.

T. Zhi, L. Y. Duan, Y. Wang, and T. Huang, “Two-stage pooling of deep convolutional features for image retrieval,” 2016, doi: 10.1109/ICIP.2016.7532802.

T. Shafira, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORKS UNTUK KLASIFIKASI CITRA TOMAT MENGGUNAKAN KERAS,” 2018.

Y. Yuan, Z. Xiong, and Q. Wang, “Acm: Adaptive cross-modal graph convolutional neural networks for rgb-d scene recognition,” 2019, doi: 10.1609/aaai.v33i01.33019176.

J. Jebadurai, I. J. Jebadurai, G. J. L. Paulraj, and N. E. Samuel, “Learning based resolution enhancement of digital images,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, 2019, doi: 10.35940/ijeat.F9025.088619.

A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks in unsupervised feature learning,” 2011.

K. Parthy, “CS231n Convolutional Neural Networks for Visual Recognition,” Stanford Univ. Course cs231n, 2018.




DOI: https://doi.org/10.35314/isi.v6i2.2104

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Find in a library with WorldCat Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: jurnalinformatika@polbeng.ac.id
www.polbeng.ac.id

Web
Analytics
View My Stats