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Abstrack – Along with the times, demands for information retrievals in scientific papers have also 

increased. Regarding experimental scientific papers, researchers have difficulty in searching for 

information on experimental scientific papers because information retrieval engines have limitations in 

the search process due to text mining-based feature extraction of the entire text, while experimental 

types of scientific paper have specific contents, which should have a different treatment in feature 

extraction. In this paper, we propose a new system for information retrieval on experimental scientific 

papers. This system consists of 4 main functions: (1) Specific content-based feature extraction, (2) 

Classification model, (3) Context-based subspace selection, and (4) Context-dependent similarity 

measurement. In feature extraction, our system extracts feature category in experimental scientific 

papers with specific content-based features, which are data, problem, method and result. To perform 

the applicability of our proposed system, we tested 77 papers in the dataset with the Leave-One-Out 

validation model with several classification algorithm (Nearest Neighbour, Naive Bayes, Support 

Vector Machine and Decision Tree) and on average performed 66.65% precision rate and accuracy of 

76,18% precision rate. We also made the experiment on the similarity, our proposed system performed 

79.17% accuracy rate 

Keywords - Scientific experimental paper, Context-base subspace selection, Context-dependent 

similarity measurement. 

 

Intisari - Seiring dengan perkembangan zaman permintaan pencarian informasi dalam makalah ilmiah 

juga meningkat. Mesin pencari informasi yang ada saat ini memiliki keterbatasan dalam proses 

pencarian berdasarkan ekstraksi fitur berbasis text-mining dari seluruh teks, sedangkan jenis makalah 

ilmiah eksperimental memiliki konten spesifik. Dalam makalah yang kami usulkan sistem untuk 

pengambilan informasi pada makalah ilmiah eksperimental. Sistem terdiri dari 4 fungsi: (1) Ekstraksi 

fitur berbasis konten, (2) Model klasifikasi, (3) Pemilihan subruang berbasis konteks, dan (4) 

Pengukuran kesamaan berdasar pada konteks.  Dalam Pemilihan Subruang Berbasis Konteks, sistem 

melakukan pengurangan dimensi dengan pemilihan subruang berbasis konteks yang dipilih oleh 

pengguna. Untuk mendapatkan hasil pencarian akhir, kami mengukur kesamaan konteks dengan 

membangun metrik dataset berdasar konteks ke paper. Untuk melakukan penerapan sistem yang kami 

usulkan, kami menguji 77 makalah dalam dataset dengan model validasi Leave-One-Out dengan 

beberapa algoritma klasifikasi (Nearest Neighbor, Naive Bayes, Support Vector Machine, dan 

Decision Tree) dan rata-rata melakukan presisi 66,65% tingkat dan akurasi tingkat presisi 76,18%. 

Kami juga melakukan percobaan pada pengukuran kesamaan dengan memberikan queri paper dan 

konten yang diinginkan (data, hasil, metode, dan masalah) sebagai konteks yang diberikan oleh 

pengguna. Dalam percobaan pengukuran kesamaan, sistem yang kami usulkan memiliki tingkat 

akurasi 79,17%. 

Kata Kunci - Scientific experimental paper, Context-baseb subspace selection, Context-dependent 

similarity measurement. 
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I. INTRODUCTION 

The increasing use of the internet has caused text-based document growing up 

exponentially every time [3]. Similarly, the electronic data of scientific document papers 

increases and makes it easier to retrieve a scientific journal information. However, large data 

causes search results to become more numerous and can also make it difficult for users to 

determine the information retrieval. In the context of education, scientific document paper is 

one of main important references for higher education. One indication of the progress of 

higher education is to look at the quality and quantity of scientific papers produced. With the 

development of higher education institutions, researchers need scientific papers as a reference 

in their research, so that the need to search and retrieve appropriate scientific papers becomes 

important. However, the search engines that exist today are not designed to specifically look 

for scientific papers, but used to search for overall text-based document. This causes that 

when the search engine used to search for specific scientific papers, it may retrieve 

inappropriate search results.  

In the search for scientific paper to produce accurate content, there are many obstacles, 

because the content is stored in the form of text-based document, consisting of unstructured 

data with high dimensional features of word. The scientific papers can be divided into two 

kinds, which are experimental and non-experimental scientific paper. The experimental 

scientific paper is a research paper composed directly on the object being examined. While 

non-experimental scientific paper is research paper written indirectly and led more to data 

collection and analysis. The experimental scientific paper consists of 4 main parts: (1) data 

content, (2) method, (3) result and (4) problem. For the experimental scientific paper, it can be 

classified based on those 4 main parts [1]. In this condition, a search engine needs to address 

the specific part of the experimental scientific paper to improve accuracy in the retrieval result. 

The users can determine more specifically their preferences for the retrieval of the 

experimental scientific paper, based on data content, method, result and problem related to 

papers they are interested in.  

II. RELATED WORK 

Because the availability of text data is increasing, to obtain information back from a text-

based document is a widely need in the current era. Likewise, the scientific paper retrieval 

also increases along with the increasing number of researchers. This is due to a scientific 

study requiring documentation that aims to record research results. Another goal is to be 

published on the relevant forum in order to account for the results of the research [4]. The 

research documentation can be in the form of scientific journals or scientific papers. With the 

increasing number of electronic data in this study, this research in the field of classification of 

scientific data also attracts much attention. The scientific papers from research papers can be 

classified [5]. The documentation of this scientific paper is a collection of letters forming 

string words. This collection of strings is a classification feature. This results in these features 

consists of high dimensional features, so a retrieval process is needed to eliminate 

unnecessary data. 

To retrieve a group of experimental scientific papers, it can be realized by classifying the 

experimental scientific papers. The process of this classification has been carried out for the 

topic of experimental scientific paper. The classification of experimental scientific papers is 

made by first obtaining information contained in these experimental scientific papers. The 

information that exists in each experimental scientific paper consists of problem, data, method 

and result. Based on these four main features, the experimental scientific papers that can be 

classified [1]. Several researchers tried to address the information retrievals of scientific paper. 

Liu et.al. [9] presented a research intelligent information retrieval system ontology-based in 

digital library by concluding that semantics retrieval technology would improve retrieval 
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quality extremely, and would be the preferred method to solving the lack of semantic relation 

in traditional retrieval technology. Suyan et.al. [10] constructed deep resolution and retrieval 

platform for large scale scientific and technical literature by applying methods of real-time 

construction of standardized Data Set for citation content analysis and proposing a scientific 

and technical literature retrieval platform based on Citation content. Yang et.all [11] applied 

Weighted Term Frequency to develop a scientific literature retrieval model and used 

simulated annealing algorithm to learn the weighted factor. Chikhi et.al. [12] proposed to 

integrate link and content information by exploiting the links semantics to enrich the textual 

content of documents. WeiDong et.al. [13] presented a scientific literature statistical analysis 

system based on DOM tree with the design idea, system structure, design and implementation 

of main model and the running result. Ma and Fang [14] proposed information cartography in 

scientific research domain which generates an information map for users to mitigate 

information overload in current systems. Saggion and Ronzano [15] presented an overview of 

approaches to the extraction of knowledge from scientific literature, including the in-depth 

analysis of the structure of the scientific articles, their semantic interpretation, content 

extraction, summarization, and visualization. However, the information retrieval of scientific 

experimental paper still remains problem due to difficulty to address the paper content 

consisting of data, result, method, and problem. 

III. ORIGINALITY 

In this paper, a new system for information retrieval on experimental scientific papers is 

presented. This system consists of 4 main functions: (1) Specific content-based feature 

extraction, (2) Classification model, (3) Selection of context-based subspaces, and (4) 

Measurement of similarities depending on the context. In the feature extraction, our system 

extracts feature categories in experimental scientific papers with certain content-based 

features, which are data, result, method, and problem. For the classification model, we use 

several classification algorithms, which are Nearest Neighbor, Naive Bayes, Support Vector 

Machine and Decision Tree, to classify certain content features from query papers into the 

aggregation of supervised documents. In the selection of context-based spaces, the system 

carries out dimension reduction by selecting context-based subspaces chosen by the user. To 

obtain the final search result, we make similarity measurements in context by constructing 

context-dependent dataset metrics to paper. 

 

IV. SYSTEM DESIGN 

In this section, we discuss the design of our proposed system for information retrieval on 

experimental scientific papers. The discussion is divided into 4 main parts of the system, 

which are (1) Specific content-based feature extraction, (2) Classification model, (3) Context-

based subspace selection, and (4) Context-dependent similarity measurement. The system 

architecture of our proposed system is shown in Figure 1. 

 

A. Specific Content-based Feature Extraction 

In this part, we discuss how to make feature extraction of paper document. The discussion 

involves the paper document, text-mining process, supervised data of each paper document 

after text-mining process, and supervised document aggregation to create huge dimensional 

metric of supervised dataset. 
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Figure 1. Architecture of our proposed system 

 

1. Paper Document 

The results of previous studies are stated that each experimental scientific paper can be 

ensured to have content: data, result, method and problem [1]. The content is written in 

sentences that are in the scientific paper. The position of the sentence in the paper is not 

grouped in certain chapters or sections. The sentences containing content can be in the title, 

abstract, introduction or other sub-chapter. So the sentence that describes the content can be in 

which part of the paper. In addition, in the paper there is a sentence describing the content 

(data, result, method and problem) used, there are also sentences that explain the method 

referred to. The sentence that describes the content that is used alone is called rhetorical 

sentence. The data obtained from previous research is rhetorical sentence data that has been 

classified based on existing content. The following is as screenshot of paper document that 

used  in this paper. 

 

 
Figure 2. Screenshot of paper document 

The paper documents then are prepared by separating into the content sentence which are 

data, result, method and problem sentences. The documents are grouped based on the original 

paper file. Each file will have 4 groups of content sentence: data, result, method and problem. 

We set these four groups of sentences to be used as supervised data and their group names to 
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be used as class labels. Figure 3(a) shows the document separation into the content sentence, 

and Figure 3(b) shows the files representing the class labels. 

 

2. Text Mining 

To form a classification model, the next step is to do the text mining process. Text mining 

is mining that is carried out by a computer to get something new, something that is not known 

before or rediscover implicit information, which comes from information extracted 

automatically from different text data sources [6]. The text mining is a technique used to deal 

with problems of classification, clustering, information extraction and information retrieval 

[7]. Basically, many of the work processes of text mining adopt from Data Mining research, 

but the difference is that the patterns used by text mining are taken from a set of unstructured 

natural languages, while Data Mining patterns are taken from structured databases [8]. Based 

on the irregularity of the text data structure, the process of text mining requires several initial 

stages which in essence is to prepare so that the text can be changed to be more structured. 

These stages are as follows. 

 

      
(a)  

 

  
 (b) 

Figure 3. Screenshot of paper separation and class labelling 
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Tokenizing stage is the process of decomposing the description in the form of a sentence 

into a word and removing delimiter such as a period (.), Comma (,), space and number 

characters in the word [9]. 

The feature selection stage aims to reduce the dimensions of a collection of texts, or in 

other words delete words that are considered insignificant or do not describe the contents of 

the document so that the classification process is more effective and accurate [6] [7]. At this 

stage, the action taken is to eliminate stopword and stemming from the words that are affixed 

[6] [7]. Stopword is a vocabulary that is not a feature (unique word) of a document. Before the 

stopword removal process is done, a stopword list must be created. If included in the stoplist, 

the words will be removed from the description so that the words left in the description are 

considered as words that characterize the contents of a document or keywords. At this stage in 

addition to filtering, the separation of sentences is also carried out, each sentence becomes 

one file. Figure 4 shows screenshot of the paper document after applying the filtering. 

 

 
Figure 4. Screenshot of the paper document after applying the filtering 

 

Stemming is the process of mapping and decomposing various forms (variants) from a 

word into its basic word form (stem). The purpose of the stemming process is to eliminate 

affixes, both in the form of prefixes, suffixes, and confixes in each word. If the affix is not 

removed, then every single word will be stored in a variety of different forms according to the 

affixes attached to it, so that it will add to the database load. This is very different if it 

removes the inherent affixes of each basic word, so one basic word will be stored once, even 

though the base word in the data source has changed from its original form and got various 

kinds of additions. 

 

Tagging is the process of justifying words that are not properly written. This error is usually 

obtained from accidental writing or writing errors. In addition, the tagging process is also 

used as a substitute for non-standard words. Figure 5 shows screenshot the paper documents 

after stemming-tagging process. 

 

 
Figure 5. Screenshot the paper documents after stemming-tagging process 

 

Term Frequency (TF) is to state the number of occurrences of a word in a sentence. The 

purpose of this process is to calculate the number of occurrences of the word. The results of 

the TF process are shown in Figure 6. 
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Figure 6. Screenshot of term frequency of the paper document after TF process 

 

B. Supervised Data 

Each sentence will be saved into one file and then, the files are grouped according to the 

type of sentence. The type of sentence according to the content to be searched for consists of: 

sentence data, sentence result, sentence method and sentence problem. Every existing data 

will be tokenizing process, filtering, stemming, tagging and TF (frequency term) to prepare 

data in the form of words along with the number of occurrences of words in the sentence. The 

paper data has been grouped into content categories so that it already has a class, as shown in 

Figure 7. To simplify labeling, the rules for making files are made. Each sentence will be 

sorted and stored in one file. 

 

C. Supervised Document Aggregation 

The next process is to create supervised document aggregation, or training data that have 

content labels. All files are collected and created tables that consist of a collection of words 

and the number of occurrences of words. Namely with a column consisting of: description of 

the origin of the file, number of sentence sequences, all words that appear and labels of 

content. And the line is the value of the appearance of the word.  

 

 
Figure 7. Screenshot of data separation grouped into content categories 
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The number of words that appeared were 2,926 words. The number of words that appear 

causes the computing process to be heavy. Then the remote data needs to be deleted. Remote 

data is data that has less contribution value in determining label class. This remote data is 

characterized by a small number of occurrences. In this paper, the amount considered small is 

that which has a smaller number equal to 2. This means that words with emergence values 

less than or equal to 2 will be omitted. By deleting data that appears one time and twice, the 

total number of words becomes 829 words. This means that the number of deleted columns is 

2,097. Figure 8 shows screenshot of supervised document aggregation among the supervised 

data. 

 

 
Figure 8. Screenshot of supervised document aggregation 

 

D. Classification Model 

The supervised document data that has been deleted from the data outlier is used as the 

meta data for classification model. In this process, we describe the classification model in 

order to classify the paper query from the user. The classification model consists of 2 

processes: classification algorithm and validation model of classification analysis. 

Regarding the classification model, we use Nearest Neighbors Algorithm. Nearest neighbor 

is an approach to look for cases by calculating the closeness between new cases and old cases, 

which is based on matching weights of a number of features. k-NN algorithm is a method for 

classifying new objects based on k of their closest neighbors. This algorithm includes a 

supervised learning algorithm, where the results of new query instances are classified based 

on the majority of the categories on k-NN. The most appearing classes will be the class of 

classification. 

k-NN method algorithm works based on the shortest distance from the query instance to the 

training data to determine k-NN. The sample training is projected into a large dimension 

space, where each dimension represents the features of the data. This space is divided into 

sections based on the training sample classification. A point in this space is marked as a class 

c if class c is the most common classification in the nearest neighbor k from that point. Near 

or near neighbors are usually calculated based on the Euclidean Distance which is represented 

as follows.  

 

                                            (1)                                                                            

 

where the matrix d(a, b) is the scalar distance of both vectors a and b of the matrix with 

dimensions d dimensions. 

 

In the training phase, this algorithm only stores feature vectors and classification of sample 

training data. In the classification phase, the same features are calculated for testing data 
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(whose classification is unknown). The distance from this new vector to all training vector 

samples is calculated and the number of k fruits that are closest is taken. The new 

classification point is predicted to be included in the highest classification of these points. 

In this paper, we apply nearest neighbor classification algorithm with different k=3,5,7, and 

9. For comparing algorithms, we also use other classification algorithms, which are Naïve 

Bayes, Support Vector machine and Decision Tree. 

The next step is classification analysis with validation model. Cross-validation is a way of 

validating a model to assess the results of data analysis. Cross-validation has several testing 

techniques. In this study the technique used was Leave-One-Out (LOO) technique. LOO 

Cross-validation technique is to experiment as much as the amount of data, with regard to 

each time all data will be considered as learning data as well as testing data. 

 

E. Context-based Subspace Selection 

In this part, we discuss to how involve the user’s intention as a context for the retrieval by 

applying the context recognition. To find the similarity of paper based on content is done by 

calculating the similarity of paper query with a set of paper based on content. Each paper in a 

set of paper is carried out by the Mining process and classified. Every single sentence in a 

paper has a label, which are data, method, result, and problem. Therefore, we apply the 

context recognition process to involve the context given by user’s intention for the query  and 

reduce the dimensional space of features with the given context. After that the similarity of 

Paper queries is calculated with each Paper in the database. The measurement of the similarity 

of each paper based on the desired content. Figure 9 shows the given context by the user to 

the classification result in order to create context dependent dataset. 

 

 
Figure 9. Context dependent dataset creation 

 

F.Context-dependent Similarity Measurement 

In this paper, the algorithm for measuring similarity uses the cosine similarity algorithm. 

Cosine similarity is the calculation of similarities between two n-dimensional vectors by 

looking for cosines from the angle between them and often used to compare documents in text 

mining with the formula. 

 

(2) 

 

 

where A dan B = vector of context features in the dataset 

 

The input given to the system is the paper query and the type of content desired. Such as 

input in the form of paper1 and the desired content is 'method', then labeled the sentences in 

paper1 and selected sentences labeled 'method'. Likewise, all the papers in the dataset are 

selected sentences labeled 'method'. Then the value of the similarity between the paper queries 

and all the papers in the dataset is calculated. The similarity values are ranked from the most 
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similar to the non-similar ones. The ranking value will be used to display the 10 most similar 

papers. Figure 10 shows screenshot retrieved result by the ‘Data’ given context. 

 

 
Figure 10. Screenshot retrieved result by the ‘Data’ given context 

V. EEXPERIMENT AND ANALYSIS 

To see the applicability of our proposed system, we conducted a series of experimental 

study with two types of experiment, which are experiment on the classification model, and 

experiment on the similarity measurement. 

 

A. Experiment on Classification Model 

Here we use training data with number of 77 scientific experimental papers that have 

content consisting of data, result, method and problem. After the sentences in the 77 papers 

are separated based on the label, the data is ready for the text mining process. The result is 

that data can be completely separated based on the initial paper file. The sentence in each 

paper can also be separated based on the label of the sentence. After text-mining process, 

supervised dataset is created with 986 sentences used as learning data and 2,926 extracted 

features of word. For the classification analysis, we used Leave-One-Out algorithm for 

validation model to 77 scientific experimental papers. In the experimental comparison, we use 

several classification algorithms, which are 1-NN, 3-NN, 5-NN, 7-NN, 9-NN, Naïve Bayes, 

Support Vector Machine and Decision Tree. Table 1 shows the precision and accuracy of the 

result of experimental comparison among classification algorithms for each content of 

scientific experimental papers. From Figure 1, overall experimental results performed a good 

classification in the precision and accuracy. It manifested a good Specific Content-based 

Feature Extraction process to create Aggregated Supervised Dataset. 

 
TABLE I 

PRECISION AND ACCURACY OF THE RESULT OF EXPERIMENTAL COMPARISON AMONG CLASSIFICATION 

ALGORITHMS FOR EACH CONTENT OF SCIENTIFIC EXPERIMENTAL PAPERS 

Classification 

Algorithm 

 

 Data Result Method Problem 
Average 

Result 

1-NN 
Precision 96.77% 84.75% 41.13% 53.66% 69.08% 

Accuracy 91.34% 74.44% 47.06% 79.21% 73.01% 

3-NN 
Precision 73.74% 64.76% 54.32% 69.33% 65.54% 

Accuracy 92.95% 76.57% 67.34% 81.85% 79.68% 

5-NN 
Precision 88.89% 70.49% 53.42% 66.67% 69.87% 

Accuracy 93.95% 80.43% 66.33% 81.34% 80.51% 
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7-NN 
Precision 96.77% 84.75% 41.13% 53.66% 69.08% 

Accuracy 91.34% 74.44% 47.06% 79.21% 73.01% 

9-NN 
Precision 88.57% 71.25% 54% 68.13% 70.49% 

Accuracy 93.78% 80.63% 66.94% 82.25% 80.90% 

Naïve Bayes 
Precision 90.91% 62.78% 59.95% 42.27% 63.98% 

Accuracy 94.61% 78.30% 69.78% 75.86% 79.64% 

Support Vector 

Machine 

Precision 95% 88.24% 40.99% 60.87% 71.27% 

Accuracy 90.22% 75.56% 46.45% 79.41% 72.91% 

Decision Tree 
Precision 76.92% 0% 38.51% 100% 53.86% 

Accuracy 89.81% 70.24% 40.28% 78.85% 69.79% 

 

B. Experiment on Similarity Measurement 

In this experiment, paper retrieval is proceed by giving the paper query and the desired 

content (data, result, method, and problem) as a context given by the user. For experimental 

study, we choose 3 papers from the scientific experimental paper collection as paper queries, 

as shown in Table 2. 

 
TABLE II  

CHOSEN PAPERS FROM SCIENTIFIC EXPERIMENTAL PAPER COLLECTION AS PAPER QUERIES 

Paper ID Paper Title 

1 A New Approach to Feature Selection in Text Classification 

7 Statistical Section Segmentation in Free-Text Clinical Records 

16 Feature selection and semi-supervised clustering using multiobjective 

optimization 

 

For every experiment, we retrieve 4-top retrieved result. Table 3-5 shows correctness of the 

experimental results of each chosen paper in the context of data, result, method, and problem. 

From the experimental result, our proposed system performed 38 correct results and 10 

incorrect results of retrieved papers, that gave 79.17% accuracy and 20.83% error rate 

 
TABLE III 

CORRECTNESS OF EXPERIMENTAL RESULT OF PAPER ID 1 IN THE CONTEXT OF DATA, RESULT, METHOD, AND 

PROBLEM 

Content Retrieved Result Correctness 

Data Feature Selection in Text Classification  correct 

LexRank: Graph-based Lexical Centrality as Salience in Text 

Summarization  correct 

Section Classification in Clinical Notes using Supervised  correct 

Feature Selection and Feature Extract ion for Text 

Categorization  correct 

Result A Comparative Study on Feature Selection in Text 

Categorization  correct 

Feature Selection in Text Classification  correct 

A Logic-Based Approach to Relation Extraction  incorrect 

Text Clustering with Feature Selection by Using Statistical Data  correct 

Method Feature Selection in Text Classification  correct 

Text Clustering with Feature Selection by Using Statistical Data  correct 

Feature selection and semi-supervised clustering using 

multiobjective optimization  correct 

Clustering-Based Feature Selection in Semi-supervised 

Problems  correct 

Problem Section Classification in Clinical Notes using Supervised  correct 

High-Performing Feature Selection for Text Classification  correct 

Text Tiling: A Quantitative Approach to Discourse 

Segmentation  correct 

A Framework of Feature Selection Methods for Text 

Categorization  correct 
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In this experiment the selected content is data content. So in the paper query and all the 

papers in the database, sentences that explain about 'data' will be searched. The sentences are 

calculated by the number of words that appear, then stored in vector form. So each paper has a 

'data' vector value. This value will be calculated using cosine similarity. Because paper is in 

more than one database, more than one data will be obtained. Every paper in the database has 

a cosine value for the paper query. This cossine value shows the closeness between the paper 

query and paper in the database. The cossine value will be sorted from large to small. The 

biggest value shows the paper that has similarities with the paper query. Then the order of the 

paper is displayed as a search result. 

 
TABLE  IV 

CORRECTNESS OF EXPERIMENTAL RESULT OF PAPER ID 7 IN THE CONTEXT OF DATA, RESULT, METHOD, AND 

PROBLEM 

Content Retrieved Result Correctness 

Data Causal Relation Extraction  correct 

An Efficient Linear Text Segmentation Algorithm Using Hierarchical 

Agglomerative  correct 

Implementation Of An Automated Text Segmentation System Using 

Hearsts Texttiling Algorithm  incorrect 

Using Query-Relevant Documents Pairs for Cross-Lingual 

Information Retrieval  incorrect 

Result Causal Relation Extraction  correct 

An Efficient Linear Text Segmentation Algorithm Using Hierarchical 

Agglomerative Clustering Agglomerative Clustering  correct 

Implementation Of An Automated Text Segmentation System Using 

Hearsts Texttiling Algorithm  correct 

Using Query-Relevant Documents Pairs for Cross-Lingual 

Information Retrieval  incorrect 

Method Survey on Feature Selection in Document Clustering  correct 

WikiTranslate: Query Translation for Cross-Lingual  correct 

Feature Selection and Feature Extract ion for Text Categorization  correct 

Accurate Query Translation for Japanese-English Cross-Language 

Information Retrieval  incorrect 

Problem A New Approach to Feature Selection in Text Classification  correct 

A Text Tiling Based Approach to Topic Boundary Detection in 

Meetings  correct 

High-Performing Feature Selection for Text Classification  incorrect 

Classifier Chains for Multi-label Classification  incorrect 

 
 

Test in table IV, this data content uses query paper ID 7 with the title "Statistical Section 

Segmentation in Free-Text Clinical Records". The paper is analyzed by taking the top four 

data from the search results. The top four data means that the four papers are the most similar 

based on system calculations. The results are like in table IV. The results of the trial after 

analyzing the two top data have the same data, but the third and fourth order papers do not 

have the same data, but the system has the same data. 
 

 

TABLE V 

 CORRECTNESS OF EXPERIMENTAL RESULT OF PAPER ID 16 IN THE CONTEXT OF DATA, RESULT, METHOD, AND 

PROBLEM 

Content Retrieved Result Correctness 

Data  Efficient semi-supervised feature selection by an ensemble approach correct 

First Order Statistics Based Feature Selection: A Diverse and Powerful Family 

of Feature Selection Techniques 

correct 
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Generating and evaluating evaluative arguments  incorrect 

Automatic Extraction of Hierarchical Relations from Text  correct 

Result Efficient semi-supervised feature selection by an ensemble approach  correct 

Clustering-Based Feature Selection in Semi-supervised Problems  correct 

Text Clustering with Feature Selection by Using Statistical Data  correct 

A General Framework of Feature Selection for Text Categorization correct 

Method Combining Lexical and Grammatical Features to Improve Readability Measures 

for First and Second Language Texts  

correct 

Feature Selection in Text Classification  correct 

A New Approach to Feature Selection in Text Classification  correct 

First Order Statistics Based Feature Selection: A Diverse and Powerful Family 

of Feature  

incorrect 

Problem Clustering-Based Feature Selection in Semi-supervised Problems correct 

Classifier Chains for Multi-label Classification  correct 

Efficient semi-supervised feature selection by an ensemble approach correct 

Abstract feature extraction for text classification  incorrect 

 

The results of the second trial can be seen in table V above, that is by using the query paper 

with ID 16 with the title "Feature selection and semi-supervised clustering using multi-

objective optimization" and search based on 'data' content. The trial produced three papers 

with the same data and one paper data that was not appropriate. An inappropriate paper is a 

paper entitled "Generating and evaluating evaluative arguments". The two papers if observed 

manually do have different data. On the search test based on the content of 'Results'. The trial 

resulted in all of the top four data having the same results as the Query paper. 

VI. CONCLUSION 

In this paper we present a new system for information retrieval on experimental scientific 

papers. This system consists of 4 main functions: (1) Specific content-based feature extraction, 

(2) Classification model, (3) Selection of context-based subspaces, and (4) Measurement of 

similarities depending on the context. In the feature extraction, our system extracts feature 

categories in experimental scientific papers with certain content-based features, which are 

data, problem, method, and result. To perform the applicability of our  proposed system, we 

tested 77 scientific experimental papers in the dataset with the Leave-One-Out validation 

model with several classification algorithms (Nearest Neighbor, Naive Bayes, Support Vector 

Machine and Decision Tree) and on average performed 66.65% precision rate and accuracy of 

76,18% precision rate. We also made the experiment on the similarity measurement by giving 

the paper query and the desired content (data, result, method, and problem) as a context given 

by the user. In the similarity measurement experiment, our proposed system performed 

79.17% accuracy rate. 
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