Strategi Manajemen Pelanggan Internet Rumah Pascabayar Berdasarkan Faktor yang Berpengaruh Terhadap Churn

Didik Prianto(1*)

(1) IPB University
(*) Corresponding Author

Abstract


In the era of connectivity, the internet industry has significantly increased year by year. The annual compound growth rate (CAGR) of Indonesian internet users is about 21.8% (2007-2017). The penetration rate of Indonesian internet users is about 54.7%, making this industry will be growing up. However, the competition of the internet industry is very high and the company facing the churn of the customer problem. This study aims to analyze the factors that affected customers churn. The result of logistic regression shows that the experience of service blocking, ownership of the residence, changing internet speed, city of residence, monthly internet fee, registration method, gerai payment method, socioeconomic class of residence, age of the customer, telephony service, and gender of customer has significantly affected to customer churn. The findings should be considered by the company to develop a customer management strategy. To acquire new customer, the company need to consider male, age above 35 y.o, medium-high SEC of residence and self-owned residence as a target market. To prevent customer churn, company need to revamp customer experience on service blocking and offering upgrade or downgrade internet speed according to customer needs.

Keywords


internet, analisis churn, regresi logistik, strategi manajemen pelanggan.

Article metrics

Abstract views : 47 | views : 1

Full Text:

PDF

References


Ahn, J. H., Hang S. P., Lee YS. (2006). Customer churn analysis: churn determinants and mediation effects of partial defection in the Korean mobile telecommunication service industry. Telecommunication Policy Journal. 30(10-11):552-568.

APJII. (2017). Penetrasi dan perilaku pengguna internet Indonesia [presentasi]. Jakarta (ID): Asosiasi Penyelenggara Jasa Internet Indonesia.

Backiel, A., Baesens, B., Claeskens, G. (2016). Predicting time-to-chum of prepaid mobile telephone customers using social network analysis. Journal of The Operational Research Society. 67(9):1135-1145.

BAPPENAS. Bappenas Sosialisasikan Rencana Pita Lebar Indonesia 2014-2019 [Website]. (2014). Retrieved from https://www.bappenas.go.id/id/berita-dan-siaran-pers/bappenas-sosialisasikan-rencana-pitalebar-indonesia-2014-2019.

Chen, I. J., Popovich, K. (2003). Understanding customer relationship management (CRM) people, process, and technology. Business Process Management Journal. 9(5): 672-688.

Hosmer, D. W., Lemeshow, S. (2000). Applied Logistic Regression. Second Edition. New York: John Wiley & Sons.

Jamal, Z., Bucklin, R. E. (2006). Improving the diagnosis and prediction of customer churn: a heterogeneous hazard modelling approach. Journal of Interactive Marketing. 20(3-4):16-29.

Pria Kotler, P. (2005). Manajement Pemasaran. Jilid I dan II. Jakarta: PT. Indeks.

Kumar, V., Werner, R. (2012). Customer Relationship Management: Concept, Strategy and Tools. Berlin: Springer.

Lunn, P. D., Lyons, S. (2018). Customer switching intention for telecoms services: evidence from Ireland. Heliyon Journal. 4(5): e00618.

Madden, G., Savage, S. J., Coble-Neal, G. (1999). Subscriber churn in the Australian ISP market. Information Economics and Policy Journal. 11(2):195-207.

Rangkuti, F. (2002). Measuring Customer Satisfaction: Gaining Customer Relationship Strategy. Jakarta: Gramedia Pustaka Utama.

Sanjaya, R. (2015). Analisis hubungan antara customer relationship management dengan loyalitas nasabah Tabungan Siaga Kerjasama (Unpublished master's thesis). IPB University, Bogor, ID.

Sever I. 2015. Importance-performance analysis: A valid management tool?. Tourism Management. 48: 43-53.

Suhartono, D., Saefuddin, A., Sumertajaya, I. M. (2013). Survival analysis of customer in postpaid telecommunication industry. Indonesian Journal of Statistics. 18(1):1-10.

Sumarwan, U. (2011). Perilaku Konsumen: Teori dan Penerapannya dalam Pemasaran. Bogor: Ghalia Indonesia.

Wong, K. K. (2011). Using cox regression to model customer time to churn in the wireless telecommunications industry. Journal of Targeting, Measurement and Analysis for Marketing. 19: 37-43.




DOI: https://doi.org/10.35314/inovbiz.v8i2.1478

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Didik Prianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Copyright of Jurnal Inovasi Bisnis (p-ISSN : 2338-4840, e-ISSN : 2614-6983)

Creative Commons License
Inovbiz: Jurnal Inovasi Bisnis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: inovbiz@polbeng.ac.id
www.polbeng.ac.id

View Inovbiz Statistics